| CARDIOLOGY | |------------------------------| | DRUGS RAID- SYMPATHOMIMETICS | | | Adrenaline | |-----------|---| | Mechanism | • Direct action at α & β adrenergic receptors | | Effect | At low dose β effects predominate → Positive inotropy & chronotropy, coronary blood flow ∴ ↑O2 demand & CO At high doses α1 effects predominate → Vasoconstriction At pulmonary β receptors → Bronchodilatation Increases glycolysis & gluconeogenesis in the liver → ↑ blood glucose Increases pain threshold | | Use | Cardiac arrest- IV bolus Circulatory collapse- IV infusion Anaphylaxis- IM bolus Upper airway obstruction- Nebulised | | | Noradrenaline "NORAD" | | Mechanism | Direct action at α>>β adrenergic receptors | | Effect | α1 stimulation causes potent vasoconstriction This causes increased systemic vascular resistance & venous return → ↑BP Undesired effects include: Increased myocardial O2 demand The increased blood pressure will cause a reflex bradycardia → lower cardiac output In pregnant females causes smooth muscle contraction → ↓ uterine blood flow, this could cause foetal asphyxia It also reduces blood flow to abdominal organ & peripheral tissues | | Use | Hypotension resistant to volume expansion e.g. septic shock | | | Ephedrine | | Mechanism | Indirect α & β adrenergic action by increasing noradrenaline action | | Effect | ● Dual receptor actions→ combined positive inotropy, chronotropy & vasoconstriction | | Use | Often given peripherally as temporising measure until central access obtained Useful in obstetric patients Used to prevent hypotension during spinal anaesthesia | | Metaraminol | | |-------------|---| | Mechanism | Direct & indirect action mainly at α adrenergic receptors | | Effect | Causes vasoconstriction Similar to noradrenaline, but effects last longer | | Use | Often given peripherally as temporising measure until central access obtained In ED useful for hypotension during rapid sequence intubation | | | | | | Dobutamine | | Mechanism | • Direct action on $\beta 1 > \beta 2$ adrenergic receptors of the heart | | Effect | β1 → Positive inotropy & chronotropy (& increased O2 demand) β2 → some smooth muscle relaxation → vasodilatation | | Llee | - Low couding authors states | | Use | Low cardiac output states In the ED this is often cardiogenic shock e.g. caused by Myocardial Infarction Also used in cardiac surgery | | | In the ED this is often cardiogenic shock e.g. caused by Myocardial Infarction Also used in cardiac surgery Dopamine | | Mechanism | In the ED this is often cardiogenic shock e.g. caused by Myocardial Infarction Also used in cardiac surgery | | | In the ED this is often cardiogenic shock e.g. caused by Myocardial Infarction Also used in cardiac surgery Dopamine |