CARDIOLOGY

ARRHYTHMIAS

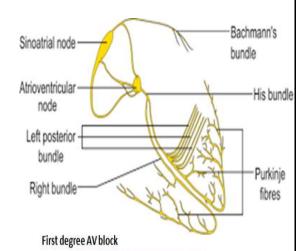
Heart Blocks

- Technically this can mean any blockage of electrical conduction, including sinoatrial node (SAN) and bundle branch blocks (BBB)
- Usually referring to AV node block
- Patients may be asymptomatic, or may suffer symptoms of palpitations; presyncope/ syncope. The may also present due to initiating cause of block e.g. MI

First Degree AV Block

- Delayed AV conduction with PR interval >200ms
- Can be physiological in fit and well
- Usually inconsequential

Second Degree Mobitz I AV block (Wenckebach)


- Usually AV node problem
- Progressive, consecutive PR interval lengthening
- Eventually one QRS complex is 'dropped'
- P waves should appear regularly
- Almost always benign

Second Degree Mobitz II AV block

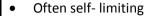
- Usually a disease of the distal conduction system
- Intermittent 'dropped' QRS complexes, no preceding PR prolongation
- When a QRS is dropped, count the number of P waves before the next QRS, there is usually a fixed ratio of P waves to conducted QRS complexes e.g. 2:1, 3:1, 4:1
- The higher the P:QRS ratio the worse the block, requiring more P
 waves to conduct 1 QRS leaves greater time for ventricular escape
 and dysrhythmia to occur
- **High risk block**, can deteriorate into complete AV block or asystole

Complete/ Third Degree AV block

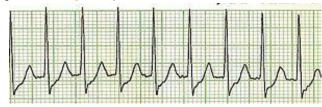
- Complete dissociation between SAN and ventricle
- ECG shows no correlation between P waves and QRS complexes
- Cardiac output relying on ventricular escape rhythm
- These ventricular escape rhythms are extremely unreliable
- They may deteriorate to asystole at any time
- Even prior to this the patient will almost definitely rapidly develop haemodynamic instability & cardiogenic shock

Second degree AV block (Mobitz I or Wenckebach)

Second degree AV block (Mobitz II)

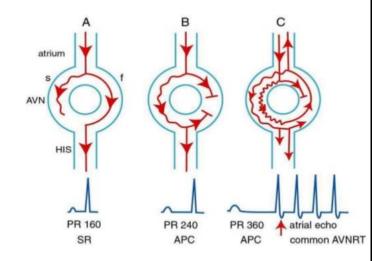


Second degree AV block (2:1 block)



Third degree AV block with junctional escape

Supraventricular tachycardia (SVT)



- Patients describe symptoms of palpitations; dyspnoea; chest pain; anxiety; syncope/ presyncope
- Technically includes any arrhythmia generated above ventricles, but usually referring to one of three causes:

AVNRT (AV Nodal re-entrant tachycardia)

- Involves a fast and slow conduction pathway around AVN
- Most of the time the fast tract dominates over slow tract cancelling it out
- Occasionally the slow tract conducts just as the fast tract is repolarising
- The signal propagates anterograde along slow tract and then retrograde up the fast tract
- This sets up a self- propagating circuit

This is the type of SVT on which vagal manoeuvres and AV node blocking drugs work e.g. adenosine

AVRT (Atrioventricular re-entrant tachycardia)

- Wolff Parkinson White Syndrome
- Involves an accessory conduction pathway
 (Bundle of Kent), usually between LV & LA.
- This bypasses AVN and insulating cardiac skeleton between atria and ventricles
- Sets up a recurrent loop
- When in sinus rhythm a delta wave is seen on ECG
- AV node blocking drugs less likely to work
- Requires ablation to treat definitively

Accessory pathway (bundle of Kent)

Paroxysmal Atrial Tachycardia

- Involves an ectopic pacemaker causing re-entrant rhythm
- Can be unifocal or multifocal
- Most commonly seen in older patients with lung disease (usually hypoxic COPD patients) or digitoxic heart failure patients

Kevin Gervin

- · Can deteriorate into AF
- Treatment is with rate controlling beta clocker or calcium channel blocker